
Blocks
in Apple’s C based languages

Copyright © 2010, John C. Shockey Jr.
All rights reserved.

Feel free to use any code in this presentation in your own
projects. If you want to base a presentation on these

slides, or base a portion of a book on these slides, please
contact me for permission first. I’ll probably be agreeable.

author@johncshockey.com

Blocks
in Apple’s C based languages

Assuming basic knowledge of at least one of the C based languages, and a little
familiarity with Objective-C.

I’m not going to cover all the dark corners, but I’ll hint where some of them are,
and suggest that you might want to stay away from them.

Blocks

“Blocks” is a language feature Apple has
added to its compilers for C, and all C
derived languages.

C

Objective-C

C++ (coming)

Objective-C++ (coming)

1: Forgive me if I mess up my plural/singular distinctions.
4: I’ll won’t really touch on blocks in C++
5: or Objective-C++

Blocks

Apple has submitted blocks to the standards
committee for C.

Editorial break

Blocks are...

An extremely useful and convenient feature

A kludge

It breaks a number of expectations one
has about C

3: I’ll point some of these out as we go along, but one overall observation is that
C is traditionally a language without a big runtime. C statements map fairly
obviously into the instructions required to implement them. That’s definitely not
the case with blocks. My completely uninformed opinion is that blocks are not
likely to make their way into standard C, at least not without changes. That’s one
of the reasons I urge caution in using certain features of blocks. Apple would
probably maintain compatibility even in the face of a changed standard, but I
intend to be cautious.

Objective-C, of course, does have a large runtime, so this observation isn’t as
relevant. But try looking at the assembly code for blocks (I did!). It’s almost
entirely unintelligible.

Why Blocks?

Implementing callbacks in C is more work
than it needs to be.

Function pointers make it possible.

But function pointers don’t include state,

So most callback schemes adopt a
convention of passing a context argument.

1: Callbacks and related uses are are good use for blocks. In this case I’m using
the term to include not only traditional callbacks, but also dispatching work to
another thread, handling “events”, and simple synchronous cases where the
block is called one or more times on the thread that started it, which the
originating routine awaits the result.
4: If your callback needs to deal with a bunch of different “things” and they
aren’t all known until runtime, you couldn’t write a separate function for each
one, even if you wanted to. So the callback needs access to information that
differs for each one.

Why Blocks?

Function pointer + context pointer is messy.

If there’s more than one piece of
information needed, you need to put it all
in a struct, and pass a pointer to that as
the context pointer.

Using a “void *” pointer bypasses type
checking.

2: Even if you have a single piece of state information, you might do this anyway
to avoid maintenance issues when that changes.
3: The routine that accepts the callback parameters doesn’t know the type of the
state information that the callback will need. It’s just a middleman, passing data
it doesn’t need between two routines that do.

Why Blocks?

Function pointer + context pointer is messy.

And that’s the easy case.

If the callback might be called after the
routine which set it has returned.

Any time the callback is to respond to
some future “event.”

Or if it might be called on another thread

Why Blocks?

In that case, function pointer + context
pointer is very messy.

You probably can’t allocate your context
structure on the stack, or it would
disappear before used.

You may have to allocate it on the heap.

And arrange for it to be deallocated.

4: Not too soon, and not too late.

Why Blocks?

What about callbacks in Objective-C?

You can use an object and a selector.

Using an object, and Cocoa memory
conventions, the issues of allocation and
deallocation is simpler.

Sometimes you still want an additional
context argument.

1: That’s C. What about Objective-C?
1: Since it includes C, you can use the same techniques, but there are some
additional possibilities.
4: Often in Objective-C this has been done by putting your context data into a
dictionary, passing that to the special purpose method created just for this call,
and then taking the dictionary apart again in that method to get all the needed
information.

Why Blocks?

But, even in the best case…

It’s still very messy.

Simple callbacks, which are often logically
related to the code that sets them, have
to be put in separate functions or
methods.

Harder to follow to code, and more
boilerplate.

Why Blocks?

Oversimplifying a bit, blocks are a better
way to do callbacks.

That includes cases that aren’t usually
called “callbacks” — but are basically the
same thing.

Examples — no blocks
(Don’t worry about the details yet.)

char foo[] = “hello there”;

int compare(const void *a, const void *b) {

! return (*(char *)a - *(char *)b);

}

qsort(foo, strlen(foo), 1, compare);

//foo now is “ eeehhllort”

Examples — blocks
(Don’t worry about the details yet.)

char foo[] = “hello there”;

qsort_b(foo, strlen(foo), 1, ^(const void *a, const void *b){

! ! return (*(char *)a - *(char *)b);

});

//foo now is “ eeehhllort”

3: The difference between these two examples isn’t all that large. But I didn’t
even use the ability of blocks to capture state from the surrounding scope. In a
case like that, you’d have had to use qsort_r for the pre-block case, and do all
that structure mangling. Plus, in a larger program, it might not be obvious that
the compare routine was subservient to the code calling qsort.

Examples — blocks
(Don’t worry about the details yet.)

@interface NSArray (MTG)

- (NSArray *) MTGmapUsingBlock: (id(^)(id))block;

@end

1: Let’s try an Objective-C example. Suppose we want to implement a map
operation on arrays.
Here’s the interface.
2: Yes, that syntax is ugly. In practice you could use a typedef to make it clearer

Examples — blocks
(Don’t worry about the details yet.)

@implementation NSArray (MTG)
- (NSArray *) MTGmapUsingBlock: (id(^)(id))block
{
 NSMutableArray * result =
 [[[NSMutableArray alloc] init] autorelease];
 for (id obj in self) {
 [result addObject: block(obj)];
 }
 return (result);
}

Here’s the implementation.
The majority of the time, you’ll be using Apple’s routines which take block
arguments, but you can see it’s not too hard to define your own if you like.
*: A production quality routine might prefer to return an immutable array, but
that’s not part of the topic.

Examples — blocks
(Don’t worry about the details yet.)

NSArray * array = …; // Assume an array of strings
NSString * suffix = @“ is a liar”;

NSArray *mapped = [array MTGmapUsingBlock: ^id(id ob) {
 return ([ob stringByAppendingString: suffix]);
}];

And here we call it.
Most of the time, this is the sort of thing you’ll end up doing — calling Apple’s
routines which accept a block.
Note how the block is able to use the “suffix” variable from the enclosing scope
— something you’d have to arrange to pass through if you were defining map
without blocks.
Simple, yes?

What Are Blocks?

Blocks are inspired by similar features in
other languages, such as blocks in Smalltalk,
and closures in LISP.

But in a C-like way they are:

a data type,

a set of operations you can perform, and

a syntax for providing a block as a literal

Blocks as data type

Blocks are declared just like function
pointers, except using a “^” instead of “*”.

A block taking and returning an int:

int (^aBlock)(int i);

Just as ugly as pointer declaration, but
then that’s C. You can use typedefs to
make complicated cases more readable.

3: However, this syntax is mostly used by routines that accept blocks, or perhaps
have them as instance variables. If you’re only calling existing APIs which use
blocks, you may find things simpler.

Blocks as data type

But what does a block value actually
represent?

Apple doesn’t specify, and you mostly don’t
need to know

But you can think of it as representing
the address of a private structure

Blocks as data type

Is it a pointer?

Apparently not quite. There are places in C
that expect a pointer type, but won’t
accept a block value.

They are objects, in the Objective-C sense.

But they are a bit weird. (More later.)

Blocks as data type

What’s in that pseudo-structure / object?

It’s private. You don’t need to know, and
Apple doesn’t say.

But if it helps to think of it, it obviously
contains a pointer to the actual code of
the block, plus the state captured from
the enclosing scope.

Block Operations

You can call a block, as you can call a
function pointer

int (^aBlock)(int i) = …;

int a = aBlock(10);

More often you will pass a block as an
argument to a function or method

Block Operations

There are also block operations related to
memory management.

But there’s a lot to say about blocks and
memory management, so I’ll postpone that
until later.

Block Operations

You can cast a block value to and from a
pointer type like “void *”

You probably shouldn’t

The only case I can think of when you’d
want to do it is if you want some routine
that takes a block argument of any type,
and then you wouldn’t be able to do
anything useful with it. So don’t.

Block Literals

Block literals are how you actually write a
block containing real code.

They’re what you mean when you point to
something and say “There’s a block.”

Block Literals

^ ReturnType (argument list) { code }

Contrast that with a regular function
definition:

ReturnType name (argument list) { code }

1: It looks very much like a regular function definition, except for the caret, and
the fact that there’s no function name.

3: Note that this is a little simplified. In the case of complicated types the return
type and function name are intermingled.

Block Literals

^ ReturnType (argument list) { code }

1: If the compiler can see that the code contains no return statement, meaning
the return type would be void, you can omit it. If there is a return type, but the
compiler can infer it from the actual return statements, you can still omit it. So in
most cases you can write

Block Literals

^ (argument list) { code }

In fact, you can almost always omit the return type. The only case where you
really need it is where the compiler will infer the wrong return type. If you get an
error about the return type, you can try putting it back in.

But suppose that the block takes no arguments. That’s actually fairly common,
when the block is representing some anonymous piece of work. In that case, you
can leave out the argument list as well, and you end up with

Block Literals

^ { code }

And that’s about as basic as you can get.

Block Literals

What can you do with a block literal?

You can assign it to a block variable, or
instance variable

But most of the time you just immediately
pass it to some routine that will use it

Block Literals

What’s special about the code in a block
literal?

It can refer to variables defined in the
enclosing scope

Two cases:

Read only access to a copy

Read / write access

Block Literals

Read only access is the most common case

Internally, the block makes a copy of the
variable at the time the block literal is
evaluated. Further changes to the variable
will not be noticed by the block.

Block Literals

NSArray * array = …; // Assume an array of strings
NSString * suffix = @“ is a liar”;

NSArray *mapped = [array MTGmapUsingBlock: ^id(id ob) {
 return ([ob stringByAppendingString: suffix]);
}];

Let’s take a look at our example again.

See how the block uses the value of “suffix”.

Let’s split it into two pieces.

Block Literals

NSArray * array = …; // Assume an array of strings
NSString * suffix = @“ is a liar”;
id (^block)(id ob);
block = ^id(id ob) {
 return ([ob stringByAppendingString: suffix]);
}

NSArray * mapped = [array MTGmapUsingBlock: block];

This is essentially the same thing, just separating the block literal from the call,
and storing it in a variable named “block”.

What happens if we alter “suffix” between those?

Block Literals

NSArray * array = …; // Assume an array of strings
NSString * suffix = @“ is a liar”;
id (^block)(id ob);
block = ^id(id ob) {
 return ([ob stringByAppendingString: suffix]);
}
suffix = @“ is a prophet”;

NSArray * mapped = [array MTGmapUsingBlock: block];

The block does not see the new value of suffix, and produces the same result as
before.

That’s because the copy of suffix is made when the block literal is evaluated, not
when it’s executed.

Block Literals

What would happen if you tried to change
“suffix” within the block?

You’ll get a compiler error. The compiler has
invisibly turned the variable accessed from
the enclosing scope into a const copy of it.

2: I find that to be another somewhat weird case. I can’t think of anywhere else
in C where something like that happens, though I might be missing another case
somewhere. But weird or not, most of the time it is what you want.

Block Literals

But what if you do need to change a variable
in an enclosing scope?

Let’s look at another example.

Block Literals

NSArray * array = …; // Assume an array of strings
NSString * truthTeller = nil;

[array enumerateObjectsUsingBlock:
^(id obj, NSUInteger idx, BOOL *stop) {
 if (![obj hasSuffix: @“liar”]) {
 truthTeller = obj; // Compiler error!
 *stop = YES;
 }
}];

You could try this, but it would fail to compile. But note that it’s only the variable
that’s read only. If “truthTeller” were a mutable string, you could change its
value, even though you couldn’t change it to point to a different string object.

By the way, note that Apple has added yet another way to enumerate arrays and
other container objects, and in some cases this is faster even than the recently
introduced “fast enumeration”.

Don’t worry about this particular method on NSArray. The “stop” argument is a
pointer to a boolean, allowing you to short circuit the iteration if desired.

Block Literals

NSArray * array = …; // Assume an array of strings
__block NSString * truthTeller = nil;

[array enumerateObjectsUsingBlock:
^(id obj, NSUInteger idx, BOOL *stop) {
 if (![obj hasSuffix: @“liar”]) {
 truthTeller = obj;
 *stop = YES;
 }
}];

We can fix it by declaring “truthTeller” to be of the “__block” storage class. Note
that there are two underbars in that symbol.

This is a new storage class, alongside the others like “auto” and “static”.

In simple cases like this it works well and is very useful. In more complicated
cases it’s a little strange, and a lot less useful. We’ll get to that later.

Block Literals

What is a block literal?

As mentioned before, internally it’s the
address of a private structure, which is also
an Objective-C object.

That structure is allocated

ON THE STACK!

3: This is important!

It’s also weird. I can’t think of another case where an Objective-C object is
allocated on the stack.

It adds to the need to be careful about memory management in some cases,
though thankfully in the most common cases it’s all taken care of for you.

Why? It’s purely about performance. Apple wants these to be fast, especially in
the cases where stack allocation is OK.

Block Literals

If block literals refer to data on the local
stack, what does that mean for their use?

In the examples I’ve shown so far, it isn’t a
problem. This is the simple synchronous case.

But in other cases, you need to make sure
the block’s data is copied to the heap.

There are also some small gotchas.

4: Let’s look at those first, and then come back to the big gotcha.

Block Literals

int (^block)();

if (flag) {
 block = ^{ return (1); };
} else {
 block = ^{ return (-1); };
}

int i = block();

This isn’t useful code, just something to show a point.
What’s wrong with it?

It might happen to work, but it might very well crash. It isn’t safe.

The if and else branches are C language scopes. The block literals are defined in
those scopes, and may no longer exist once they’ve been exited. So the block
being called may no longer exist. Of course you can get the same effect with any
sort of nested code, including for and while loops.

In practice, this isn’t something you’ll run into very often, but you want to be
aware of it just in case.

Block Literals

When do block literals need to be copied to
the heap?

Any time the block may be called after
the scope in which it was created has
returned.

Any time the block may be called on
another thread.

2: This is the case when blocks are used for traditional callbacks. For example,
Grand Central Dispatch allows you to specify a block to be called whenever a
timer fires. That could happen long after the routine that defined the block has
returned.

3: By Apple’s decree, even if the originating routine is waiting for that other
thread to finsh. I think the main reason is that it can confuse the garbage
collector, in which case it might work in a non-garbage collected environment.
But I wouldn’t suggest trying it, as even if it works it could break in the future.

Block Literals

void foo()
{
 dispatch_after(when, queue, ^{
 // do something when the timer fires
 });
}

Here are some examples of these, using Grand Central Dispatch. There isn’t time
to talk about GCD tonight, but you should be able to see that this block, defined
on the stack in the function “foo”, isn’t going to still be there once the timer
fires.

Block Literals

void foo()
{
 dispatch_async(queue, ^{
 // do something on a background thread
 });
}

Similarly, you can’t expect this block to still be there on the stack once that other
thread runs.

However, both of these examples would work, but that’s because the GCD
routines take care of copying the block to the heap for you.

In general, Apple’s API routines copy blocks to the heap any time the block’s
execution might outlive the current stack frame. So if you’re only using blocks as
arguments to Apple’s routines, you should be OK. But if you’re creating routines
of your own that take blocks which might be executed non-synchronously, you
should do this yourself, as a service to your callers.

Block Literals

How do you copy block literals to the heap?

In C, you can use Block_copy() and
Block_release().

In Objective-C you can use copy, release,
autorelease, and even garbage collection on
the values.

This is the preferred approach.

2: Block_copy copies its argument to the heap, and returns the new value. If it’s
already on the heap, it merely increments a reference count. Block_release
decrements the reference count, and deletes the object if it’s no longer
referenced.

3: You could use retain, but it isn’t really recommended.

More Memory
Management

OK, so most of the time the routines you
pass a block to will take care of copying
the block to the heap, and deleting it
when it’s no longer needed. What about
the variables that are captured from the
enclosing scope?

More Memory
Management

If the block might outlive its place of
creation, you need to make sure the
objects it accesses are still around.

Some of that will be handled for you as
well.

More Memory
Management

When a block is copied to the heap, a
number of things happen automatically.

Any __block variables are copied to the
heap, and things are arranged such that
the new copy will be referenced in all
cases, including the original stack frame,
even its accesses outside the block. They
will be deallocated when no longer
referenced and the original scope is gone.

2: There are a couple of gotchas here.

You can take the address of an __block variable using &, like any other variable.
But it’s address will change when it’s copied to the heap. This is another one of
those cases where blocks have a special case that doesn’t occur anywhere else in
the language.

Also, __block variables can not be certain types, in particular arrays (in the C
sense). I believe that’s due to C++ issues with copying, but it applies in C and
Objective-C as well. (I did say I wasn’t going to deal with C++, but for you C++
hackers note that all this copying will cause copy constructors to be executed.
Just a word to the wise.)

More Memory
Management

When a block is copied to the heap, a
number of things happen automatically.

Any read-only variables captured by the
block which are Objective-C objects will
be retained at the time of the copy, and
released when the block itself goes away.

This (retain/release) does not happen for
__block variables. (The read-write case.)

2: This handles a lot of the common cases of memory management for you, once
again.

3: I’m not entirely sure why. An Apple engineer said that it was because in
certain obscure cases it was impossible for it to do it correctly. I suspect it might
be another C++ effect, though I’m not certain of that.

More Memory
Management

I haven’t mentioned this case so far, but if a
block is defined within an Objective-C
instance method, the block can reference its
instance variables. In effect, it is capturing a
read-only reference to “self”. In these cases,
it is “self” that is retained and released.
(Direct references to “self” and “super” do
the same thing, of course.)

More Memory
Management

A warning about all this automatic copying.

If a variable is sometimes undefined, it will
try to copy it anyway. If it’s expecting it to
be an Objective-C object... BOOM.

It might look safe because you carefully
arrange to only use it when it is defined, but
it is not safe.

More Memory
Management

What memory management isn’t handled
automatically?

In the non-synchronous case:

Core Foundation objects, malloc data, GCD
objects, etc.

Objects referenced by __block variables.

More Memory
Management

In the case of Core Foundation objects,
malloc data, GCD objects, etc. you have to
deal with it manually.

If the block is only executed once, you
can retain CF objects and anything else
with a reference count before the block,
and release them within the block at the
end. For malloc, you may be able to free
at the end of the block.

2: If the block will be executed multiple time, AND non-synchronously, it’s going
to be more complicated. That’s what we get paid for, I guess.

More Memory
Management

In the case of __block variables, it could be
very complicated. The variable can change to
point to different objects, possibly from
multiple threads which leads to all sorts of
atomicity issues as well.

But I don’t actually see any good reason to
do this. You aren’t using it to return data to
the original routine, if that routine might be
gone by the time the block executes.

2: Apple describes that it’s compilers do what’s necessary to make this work
“correctly” — but personally I would avoid using __block in anything but the
simple case where the block is executed synchronously, and the variable is used
only to return information from the block to the outer routine. Perhaps it will
turn out that there are other good reasons to use the feature, but right now
that’s my feeling.

Some Conventions

Apple suggests, for reasons of readability,
not having more than one block argument to
a given routine, if possible — and making the
block the last argument.

All the examples I’ve shown have done this. The alternatives are mostly a lot
harder to read.

Some Conventions

In Objective-C, think about how you name
your block arguments. Block is a little
ambiguous. Apple suggests using it only for
generic cases, and preferring something
more descriptive when possible.

Block Literals

addOperationWithBlock:
 but
indexesOfObjectsPassingTest:
sortUsingComparator:
addLocalMonitorForEventsMatchingMask:handler:
beginBackgroundTaskWithExpirationHandler:
beginSheetModalForWindow:completionHandler:

Q & A

Any questions?

The End

Good night.

